

Journal of Organometallic Chemistry 551 (1998) 101-105

Reaction path of methoxy species to isobutene and its dependence on oxide catalysts in CO hydrogenation

Ken-ichi Maruya *, Miyuki Kawamura, Makiko Aikawa, Michikazu Hara, Toru Arai

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226, Japan

Received 30 April 1997; received in revised form 2 July 1997

Abstract

CO hydrogenation in the presence of dimethyl ether (DME) was carried out on some selective catalysts for the formation of isobutene. ZrO_2 , ZrO_2-CeO_2 , $ZrO_2-CeO_2-CeO_2-CoO$ showed a high enhancement effect on hydrocarbon formation, CeO_2 almost no effect, and $ZrO_2-CeO_2-Fe_2O_3$ formed methane selectively. CO hydrogenation on DME-preadsorbed CeO_2 resulted in an increase in methane production and the retardation of the other hydrocarbons. The preadsorption of dimethoxymethane was most effective for the formation of ethene. The reaction path of methoxy species to methyl and methylene was discussed. © 1998 Elsevier Science S.A.

Keywords: CO hydrogenation; Isobutene; Methoxy species; Oxide catalysts

1. Introduction

Methoxy species on metal oxide surfaces are very important as intermediates in catalytic CO hydrogenation. Oxide catalysts for CO hydrogenation characteristically form branched chain compounds [1-4]. We have reported that ZrO₂ catalyst selectively forms isobutene from CO and H_2 , although the activity is very low [3]. The observation of surface intermediates on the ZrO_2 catalyst by IR, solid state NMR, and chemical trapping experiments showed the presence of only formate and methoxy species [5]. The tracer studies using ¹³CO showed that carbon of methoxy species is incorporated into the central position of isobutene formed in the CO hydrogenation [6]. This indicates that methoxy species are key intermediates for the formation of isobutene from CO and H_2 . CeO₂ is also selective catalyst for the formation of branched chain compounds, i.e., isobutene in C₄ and isoprene in C₅ hydrocarbons from CO and H_2 [7]. However, the surface species on CeO₂ during CO hydrogenation proved difficult to analyze by IR measurements [8]. On the other hand, chain growth for C_2 to C_3 species and the subsequent chain branching to iso-C₄ compounds are thought to occur by aldol condensation-type reactions in 'isosynthesis' [9] and isobutanol synthesis from CO and H_2 [10]. Therefore, the formation of C_2 oxygenates for the starting material of aldol condensation-type reactions would be the key reaction in branched C_4 compound formation. The reaction of methoxy species with CO and H_2 on the metal oxides is essential for the catalytic ability of these catalysts. Here we describe the reaction of dimethyl ether with CO and H_2 over oxide catalysts and discuss the reaction path of methoxy species to C_2 oxygenates.

2. Results and discussion

2.1. Effect of addition of DME on CO hydrogenation over oxide catalysts

The effects of DME addition to CO and H_2 over some single component and mixed oxide catalysts are listed in Table 1. The addition of DME leads to an increase of hydrocarbon production and the decrease of CO₂. The increase is most noticeable for C₁ and C₂ hydrocarbons, resulting in the lower selectivity of total C₄ hydrocarbons. This product distribution pattern seems to approach to that of reaction of DME alone (C₁: 13.6, C₂: 52.0, C₃: 11.3, C₄: 17.4, C₅: 3.6, and C₆₊: 2.1%). However, the isobutene selectivity in C₄ hydrocarbons is higher in the presence of DME than

^{*} Corresponding author.

Catalyst (atomic ratio)	DME feed rate (ml min ^{-1})	Formation rate (μ mol h ⁻¹ g ⁻¹)					Isobutene/ Σ C4 (%)		
		$\overline{CO_2}$	C ₁	C ₂	C ₃	C_4	C ₅	C ₆₊	
ZrO ₂	0	49	+	0.4	0.2	3.3	0.1	+	86
2	0.5	4	1.5	5.0	2.3	8.0	2.1	2.1	
	1.0	3	1.5	5.0	2.3	7.8	2.1	2.1	92
CeO ₂	0	93	2.7	1.7	1.2	5.6	3.2	2.6	66
-	0.5	96	3.6	1.8	1.3	6.1	3.6	1.6	
	1.0	100	3.2	2.0	1.4	6.3	3.8	1.3	95
ZrO ₂ -CeO ₂	0	100	1.8	1.1	1.0	2.9	1.2	+	82
	0.5	20	34.89	7.3	7.3	49.3	13.1	33.4	
(1:1)	1.0	15	38.5	7.7	6.2	47.7	15.4	37.0	97
ZrO ₂ -CeO ₂ -CoO	0	125	6.3	5.7	6.8	31.9	4.6	1.7	93
	0.5	24	61.9	8.8	10.5	63	17.5	15.8	
(10:10:1)	1.0	12	61.3	8.8	10.5	63.0	17.5	15.8	96
$ZrO_2 - CeO_2 - Fe_2O_3$	0	158	12.2	3.7	4.3	31.1	6.1	3.7	88
	0.5	71	311.1	24.2	4.0	48.5	8.1	4.0	
(10:10:1)	1.0	69	505.6	12.2	6.1	54.8	12.2	18.5	79

Table 1 Formation rate of hydrocarbons and CO_2 and distribution of hydrocarbons in the presence of DME at 643 K^a

^aCatalyst: 2.0 g, reaction temperature: 643 K, flow rate: $CO/H_2/N_2 = 40/40/20$ ml min⁻¹.

that in the absence, except for ZrO_2 -CeO₂-Fe₂O₃ catalyst, as shown in the last column. Thus, the five catalysts investigated can be divided into the following three groups: (i) the increase in formation rate of hydrocarbons with high isobutene selectivity and a large decrease of CO₂ (ZrO₂, ZrO₂-CeO₂, ZrO₂-CeO₂-CoO), (ii) nearly no effect (CeO₂), and (iii) the remarkable increase of only methane and the moderate increase of the other hydrocarbons. This is accompanied by a lower rate of formation of CO₂ and lower selectivity for isobutene (ZrO_2 - CeO_2 - Fe_2O_3). The effects of methoxy species are most significant for catalyst in group (i). Oxygenated products, which account for the decrease in CO_2 formation, are observed as methanol as shown in Table 2. Therefore, one of the roles of DME is possibly to convert surface hydroxyl groups to methoxy species and methanol.

The rate of hydrocarbon formation and the distribution of products with CeO_2 catalysts are influenced very little by addition of DME. There are two possibilities for this: (1) DME cannot react with hydroxyl species on CeO_2 , and (2) the amount of hydroxyl species available

Table 2 Formation of methanol by the addition of DME

Catalyst (atomic ratio)	DME feed rate (ml min ^{-1})	Rate of formation $(\mu \text{mol } h^{-1} \text{ g}^{-1})$				
		Total hydrocarbon	Methanol			
$\overline{\text{ZrO}_2 - \text{CeO}_2 - \text{CoO}}$	0	57	0			
	0.5	182	486			
(10:10:1)	1.0	175	792			
$ZrO_2 - CeO_2 - Fe_2O_3$	0	61	0			
	0.5	404	289			
(10:10:1)	1.0	609	555			

to react with DME is low compared with ZrO_2 . Table 3 shows the dependence of the CO_2 :H₂ ratio on the space velocity. The ratio of CO₂:H₂O formed at 673 K approaches the equilibrium value, and further increase of the velocity, i.e., decrease of gas contact time results in the decrease of the CO_2 :H₂O ratio, indicating that CO_2 are formed by the water gas shift reaction. This indicates that the reaction of DME with hydroxyl species on CeO_2 is slower than that of CO, as illustrated in Scheme 1. It has been shown that CeO_2 is partially reduced under the reaction conditions and the reduced CeO₂ is active for the hydrogenation of CO [11]. The reduced and oxygen-deficient cerium ion has d-electron density available for back-donation to CO. ZrO₂ is less easily reduced; the active site is Zr⁴⁺, which has no d-electrons. Thus, Zr-OH reacts faster DME than with CO, while the opposite holds true for Ce-OH.

2.2. Difference between ZrO_2 and CeO_2 for the reactivity of methoxy species

From the chemical trapping experiments, the amounts of methoxy species on ZrO_2 during CO hydrogenation were observed to be 140 and 30 μ mol g⁻¹ at 523 and 643 K, respectively [5]. These amounts were estimated to occupy 40 and 9% of surface Zr ions where the surface area of ZrO_2 was 50 m² g⁻¹. The lattice parameters used in the estimations were obtained from

Table 3	
Dependence of ratio of CO ₂	to H ₂ O on the cantact time ^a

P						
Space velocity	At equilibrium	0.48	0.97	3.95	19.9	
$(10^{3} h^{-1})$ CO ₂ :H ₂ O ratio	3.7	3.5	3.9	3.3	2.3	
2 2						

^aCatalyst: 1.5 g, reaction temperature: 673 K, $H_2/CO = 3$.

Scheme 1. The reaction of Ce-OH with CO and DME.

tetragonal phase of ZrO₂. Similarly, the amounts of methoxy species on CeO₂ were 0.36 and 0.18 μ mol g^{-1} at 523 and 673 K, respectively [5]. These amounts are small, even considering the lower surface area. The predominant feature of the CeO2 catalyst is that chemical trapping of intermediates species gave 0.47 and 0.23 μ mol g⁻¹ of methane from the catalysts at 523 and 673 K, respectively [5]. This suggests that there are methyl or methylene species on the CeO₂ surface; the amounts of these species exceed those of methoxy species. To investigate whether the DME preadsorption results in the increase of hydrocarbons like ZrO2 catalyst or not, CO hydrogenation on CeO₂, on which DME was preadsorbed, was carried out. The preadsorption of DME results only in the increase of methane and the retardation of the other hydrocarbons, as shown in Run 2 in Table 4. This suggests that with the CeO_2 catalyst, the transformation of DME to methyl or methylene species is fast, while the carbon-carbon bond formation reaction is slower. Thus, the reactivity of methoxy species on ZrO_2 and CeO_2 can be described as represented in Scheme 2.

2.3. Reaction path from methoxy to methyl and/or methylene species

Studies on the conversion of methoxy species to methyl or methylene species have been reported. C p₂ Z rCl-substituted dimethyl ether, Cp₂Zr(Cl)CH₂OCH₃, is hydrogenated with H–Zr complex to yield the corresponding methyl–Zr complex [12], while its thermolysis at 200°C gives ethene [13]. Upon treatment of binuclear μ , η^2 -formaldehyde Cp₂ZrCl complex with suspension of hydridozir-

Scheme 2. The difference of reactivity of methoxy species on ZrO_2 and CeO_2 .

conocene chloride at 55°C, the complex is slowly consumed to form $(Cp_2ZrCl)_2O$ and $Cp_2Zr(CH_3)Cl$ in a equimolar ratio [14]. μ -Hydride complex and dinuclear complex of Ta react with CO to form η -CHO and η -CH₂, respectively [15]. It is reported that methoxy complex of Cp_2^* Ta is in an equilibrium with the η^2 -formaldehyde hydride complex, which is further transformed to form the corresponding oxo methyl complex by the rearrangement [16,17].

Since the above literatures show that η^2 -formaldehyde-type species can be intermediates in the formation of hydrocarbons from CO and H₂, CO hydrogenation over CeO₂ pretreated with dimethyl acetals of aldehydes was carried out. The preadsorption of dimethoxymethane (Run 3) leads to a marked increase in ethene production, even in comparison to the reaction without the preadsorption (Run 1). This suggests that dimethoxymethane converts to η^2 -formaldehyde species, which form methylene species. On the other hand, it is known that there are terminal and bridging types of methoxy species on ZrO₂ during CO hydrogenation [18] and it was suggested from the reaction of methoxy species on CeO₂ that there are methoxy species that adsorbed three Ce ions [19,20]. Therefore, the conversion of methoxy species to methyl and/or methylene species could proceed through a species coordinated to two or three Ce ions. If a bridging or a three-coordinate methoxy species converts to η^2 -formaldehyde and hy-

Table 4

Effect of oxygenate preadsorption on product formation rate over CeO₂ catalyst^a

Run	Compound preadsorbed	Rate of H.C. ^c formation/carbon (μ mol g ⁻¹ h ⁻¹)	Selee	Selectivity ^b (%)				
			$\overline{C_1}$	C ₂	C ₃	C_4	C ₅	C ₆₊
1	_	62	78	21	2	1	N.D. ^c	N.D. ^c
2	CH ₃ OCH ₃	21	95	3	1	1	N.D.	N.D. ^c
3	$CH_2(OCH_3)_2$	46	66	25	3	4	4	N.D.
4	$CH_2CH(OCH_3)_2$	118	19	14	13	21	15	17
5	$CH_3CH_2CH(OCH_3)_2$	87	26	4	10	24	15	21
6	in steady state (CeO_2)	43	25	29(96)	9(84)	21	8	8
7	in steady state (ZrO_2)	10	5	6(64)	1(90)	77	5	trace

^aCatalyst (2.0 g) was evacuated at 973 K for 3 h, followed by hydrogen treatment at 773 K and 66 kPa for 16 h before the reaction. The preadsorption of oxygenates was carried out at 5 pKa and evacuated soon after the treatment at 673 K. Products were collected for initial 10 min. ${}^{b}C_{2}$ and C_{3} hydrocarbons formed in preadsorption experiments consisted of alkenes with almost 100% selectivity. Figures in parentheses in C_{2} and C_{3} in steady states stand for alkene selectivity of the corresponding hydrocarbons.

^cH.C. = hydrocarbons, N.D. = not detected.

dride species, the reaction path could be depicted as in Scheme 3.

With ZrO_2 catalyst the selectivity of ethene in C_2 hydrocarbons is lower than that of propene in C_3 hydrocarbons (Table 4, Run 7), while with CeO_2 the order of selectivity is reverse (Table 4, Run 6). For alkene, ethene is hydrogenated faster than propene. Therefore, if an alkane is a hydrogenation product from an alkene, the selectivity of ethene should be lower than that of propene. The higher selectivity of ethene with the CeO_2 catalyst would seem to suggest that there is an another path to form ethene alone. The coupling reaction of methylene species in Scheme 3 could explain both the selectivity of ethene. The difference between ZrO_2 and CeO_2 catalysts could relate to the fact that ZrO_2 is less easily reduced than CeO_2 [21,22].

The formation of C₂ species derives from the carbonylation of methyl–Zr species, although we have no clear evidence at present. The results that ¹²CO hydrogenation on ¹³CH₃O-preadsorbed ZrO₂ formed ¹²CH₂ = ¹³C(¹²CH₃)₂ [6] and that the insertion of CO into a methyl–Zr bond is fast at room temperature [23] would support the carbonylation path, depicted in Scheme 4. The formation of isobutene is explained by the aldol condensation from acyl species.

2.4. The role of Co and Fe ions in the three-component catalysts

XRD analyses of the three component catalysts before and after CO hydrogenation showed only broad peaks due to $Ce_{1-r}Zr_rO_2$ or its mixture with CeO_2 , along with shoulders due to ZrO_2 . No peaks were observed for CoO and Fe₂O₃, indicating the fine dispersion of the oxides. XPS measurements showed peaks due to Zr^{4+} , Ce^{4+} , and small peaks due to Ce^{3+} , but no peaks due to Co and Fe ions. This indicates that concentrations of Co and Fe ions on the surface are much lower than those estimated from their atomic ratios in the catalyst preparation because the cross sections of $2P_{3/2}$'s of Co and Fe are between 4.3 of Zr $3d_{5/2}$ and 28 of Ce $3d_{5/2}$. The product distribution with ZrO_2 -CeO₂-CoO in Table 1 and the above results with XRD and XPS show that the Co in this catalyst is in a higher oxidation rather than the metallic state. The rate of hydrogenation in the absence of DME with this catalyst

Scheme 3. Proposed reaction path of methoxy species to methyl and methylene species.

Scheme 4. The formation of C_2 compounds.

system is higher than that with ZrO_2 and ZrO_2 –CeO₂, while the rate in the presence of DME is slightly higher. Therefore, the role of Co ion could be to increase the amount of methoxy species on the catalyst and the effect on the acceleration of transformation from methoxy to methyl and/or methylene could be low.

On the other hand, $ZrO_2-CeO_2-Fe_2O_3$ becomes a selective methanation catalyst by the addition of DME, as shown in Table 1. This may mean that Fe_2O_3 is reduced to metal or that iron oxide promotes the formation of methane. Since the results of XRD and XPS showed no peaks due to iron compounds, the state of iron is not clear yet.

With the Co-containing catalysts, the rate of formation of hydrocarbons is much less than those of CO₂ (Table 1) and of methanol (Table 2), indicating the formation of carbonaceous or carbide species on the catalyst surface. Table 1 shows that the formation of such surface carbon species seems to occur on the present catalyst systems. On the other hand, with the Fe-containing catalyst, the rate of hydrocarbon formation is much less than that of CO_2 , and little more than that of methanol, indicating that the reaction in the presence of DME proceeds without forming the surface carbon species, but CO hydrogenation without DME is similar to that with the Co-containing catalyst. Thus, it is concluded that the role of iron oxide in Fe-containing catalysts is to accelerate the formation of methyl and/or methylene species and also the hydrogenation of the C_1 species.

3. Experimental

Oxides were prepared according to the literatures [1,3,4]. Reactions were carried out in a conventional flow system under atmospheric pressure. Catalysts were calcined at 723 K under N_2 for 3 h, followed by lowering to a given temperature to start the CO hydrogenation. CO hydrogenation on oxygenate-preadsorbed CeO₂ was carried out in a glass vacuum system equipped with a gas circulation pump. CeO₂ catalyst was evacuated at 973 K for 3 h, treated with H₂ at 773 K for 16 h, and evacuated again at the temperature before the CO hydrogenation reaction. The hydrogen treatment was done before oxygenate preadsorption because CeO₂ is

partially reduced under the reaction conditions. Treatments of CeO₂ with oxygenates were carried out at 673 K and at 50 Torr for few minutes, followed by evacuation at the temperature for few minutes. Products were determined by the on-line GC equipped with adsorb P-1 for hydrocarbons and CO₂ and VZ 10 for C₄ and C₅ isomers.

4. Summary

(i) The selective formation of isobutene from CO and H_2 over oxide catalysts is explained by the paths: (1) formation of methoxy species from CO and H_2 , (2) conversion of methoxy species to methyl species, (3) insertion of CO into a methyl-metal bond, and (4) aldol condensation of C₂ oxygenates with formaldehyde.

(ii) ZrO_2 catalyst has the rate-determining step shown in path (2) and faster steps shown in (3) and (4).

(iii) CeO_2 is fast in step (2) but slow in step (3).

(iv) Co in ZrO_2 catalyst accelerates step (1), but has almost no effect on the other steps. Fe accelerates only hydrogenation of methyl species to form methane.

Acknowledgements

This paper is dedicated to Prof. Peter M. Maitlis on the occasion of his 65th birthday.

References

- [1] H. Pichler, K.H. Ziesecke, Brennst.-Chem. 30 (1949) 13.
- [2] R. Kieffer, J. Varela, A. Deluzarche, J. Chem. Soc., Chem. Commun. (1983) 763.

- [3] T. Maehashi, K. Maruya, K. Domen, K. Aika, T. Onishi, Chem. Lett. (1984) 747.
- [4] K. Maruya, A. Inaba, T. Maehashi, K. Domen, T. Onishi, J. Chem. Soc., Chem. Commun. (1984) 487.
- [5] K. Maruya, A. Takasawa, M. Aikawa, T. Haraoka, K. Domen, T. Onishi, J. Chem. Soc., Faraday Trans. 90 (1994) 911.
- [6] K. Maruya, A. Takasawa, T. Haraoka, K. Domen, T. Onishi, J. Mol. Catal. A: Chemical 112 (1996) 143.
- [7] K. Maruya, K. Ito, K. Kushihashi, Y. Kishida, K. Domen, T. Onishi, Catal. Lett. 14 (1992) 123.
- [8] C. Li, K. Domen, K. Maruya, T. Onishi, J. Catal. 141 (1993) 540.
- [9] R.B. Anderson, J. Feldman, H.H. Storch, Ind. Eng. Chem. 44 (1952) 2418.
- [10] J.G. Nunan, C.E. Bogdan, K. Klier, K.J. Smith, C.-W. Young, R.G. Herman, J. Catal. 113 (1988) 410.
- [11] T. Arai, K. Maruya, K. Domen, T. Onishi, J. Catal. 141 (1993) 533.
- [12] G. Erker, R. Schlund, C. Kruger, J. Chem. Soc., Chem. Commun. (1986) 1403.
- [13] G. Erker, C. Kruger, R. Schlund, Naturforsch. B12 (1987) 1009.
- [14] G. Erker, U. Dorf, J.L. Atwood, W.E. Hunter, J. Am. Chem. Soc. 108 (1986) 2251.
- [15] R. Toreki, R.E. LaPointe, P.T. Wolczanski, J. Am. Chem. Soc. 109 (1987) 7558.
- [16] A.V. Asselt, B.J. Burger, V.C. Gibson, J.B. Bercaw, J. Am. Chem. Soc. 108 (1986) 5347.
- [17] G. Parkin, E. Bunel, B.J. Burger, M.S. Trimmer, A. van Assalt, J.E. Bercaw, J. Mol. Catal. 41 (1987) 21.
- [18] F. Ouyang, J.N. Kondo, K. Maruya, K. Domen, J. Chem. Soc., Faraday Trans. 93 (1997) 169.
- [19] M. Hara, M. Kawamura, J.N. Kondo, K. Domen, K. Maruya, J. Pht. Chem. 100 (1996) 14462.
- [20] A. Badri, C. Binet, J.-C. Lavalley, J. Chem. Soc., Faraday Trans. 93 (1997) 1159.
- [21] E.M. Cohn, in: P.H. Emmett (Ed.), Catalysis, Vol. 4, Reinhold, New York, 1956, p. 443.
- [22] K. Otsuka, M. Hatano, A. Morikawa, J. Catal. 79 (1983) 493.
- [23] J.M. Manriquez, D.R. McAlister, R.D. Sanner, J.E. Bercaw, J. Am. Chem. Soc. 100 (1978) 2716.